GRAFLAR NAZARIYASI ASOSIDA TARMOQ TRAFIGINI QURISH METODOLOGIYASINING BOSQICHLARI

Authors

  • Sh.R G‘ulomov Muhammad al-Xorazmiy nomidagi TATU, PhD, dotsent.
  • B.B Turdibekov Muhammad al-Xorazmiy nomidagi TATU assistenti.

Keywords:

Graf, tarmoq trafigi, RUS, ROS, SMOTE, konvolyutsion tarmoq, Chebichev polinomlari.

Abstract

Ushbu maqolada graflar nazariyasining asosiy tushunchalari va tarmoq trafigini graflar nazariyasi orqali qurish bosqichlari keltirilgan. Grafik ma’lumotlar qatlami ma’lumotlarini ko‘paytirish usulining strukturasi taqdim etilgan. Kovolyutsion filtrlarni modellashtirish uchun K darajasigacha bo‘lgan Chebichev polinomlari qo‘llaniladigan grafik konvolyutsion tarmoqlari amalga oshirilgan.

References

Silva, T.C. , Zhao, L. , 2016. Machine learning in complex networks, volume 1. Springer. Stivala, A.D., Koskinen, J.H., Rolls, D.A., Wang, P., Robins, G.L., 2016. Snowball sampling for estimating exponential random graph models for large networks. Social Networks 47, 167–188

Fernandez A, García S, Galar M, Prati RC, Krawczyk B, Herrera F (2018c) Dimensionality reduction for imbalanced learning. In: Learning from imbalanced data sets. Springer, pp 227–251

Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N., 2018. A survey on addressing high-class imbalance in big data. Journal of Big Data 5 (1), 1–30.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J., 2018. A survey on deep learning techniques for image and video semantic segmentation. Applied Soft Computing 70, 41–65

Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W., 2016. Evaluation of graph sampling: A visualization perspective. IEEE transactions on visualization and computer graphics 23 (1), 401–410

Scarselli, F. , Gori, M. , Tsoi, A.C. , Hagenbuchner, M. , Monfardini, G. , 2008. The graph neural network model. IEEE Transactions on Neural Networks 20 (1), 61–80

Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J., 2019. A survey of deep learning-based network anomaly detection. Cluster Computing 22 (1), 949–961

Zoghi, Z. , 2020. Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset. University of Toledo, pp.118

Jiang, K., Wang, W., Wang, A., Wu, H., 2020. Network intrusion detection combined hybrid sampling with deep hierarchical network. IEEE Access 8, 32464–32476

Zhang, S., Tong, H. , Xu, J., Maciejewski, R., 2019. Graph convolutional networks: a comprehensive review. Computational Social Networks 6 (1), 1–23

Monshizadeh, M., Khatri, V., Atli, B.G., Kantola, R., Yan, Z., 2019. Performance evaluation of a combined anomaly detection platform. IEEE Access 7, pp.100964–100978

Downloads

Published

2023-11-30

How to Cite

G‘ulomov , S., & Turdibekov , B. (2023). GRAFLAR NAZARIYASI ASOSIDA TARMOQ TRAFIGINI QURISH METODOLOGIYASINING BOSQICHLARI . Innovative Development in Educational Activities, 2(22), 220–233. Retrieved from https://openidea.uz/index.php/idea/article/view/1838