GRAFLAR NAZARIYASI ASOSIDA TARMOQ TRAFIGINI QURISH METODOLOGIYASINING BOSQICHLARI
Keywords:
Graf, tarmoq trafigi, RUS, ROS, SMOTE, konvolyutsion tarmoq, Chebichev polinomlari.Abstract
Ushbu maqolada graflar nazariyasining asosiy tushunchalari va tarmoq trafigini graflar nazariyasi orqali qurish bosqichlari keltirilgan. Grafik ma’lumotlar qatlami ma’lumotlarini ko‘paytirish usulining strukturasi taqdim etilgan. Kovolyutsion filtrlarni modellashtirish uchun K darajasigacha bo‘lgan Chebichev polinomlari qo‘llaniladigan grafik konvolyutsion tarmoqlari amalga oshirilgan.
References
Silva, T.C. , Zhao, L. , 2016. Machine learning in complex networks, volume 1. Springer. Stivala, A.D., Koskinen, J.H., Rolls, D.A., Wang, P., Robins, G.L., 2016. Snowball sampling for estimating exponential random graph models for large networks. Social Networks 47, 167–188
Fernandez A, García S, Galar M, Prati RC, Krawczyk B, Herrera F (2018c) Dimensionality reduction for imbalanced learning. In: Learning from imbalanced data sets. Springer, pp 227–251
Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N., 2018. A survey on addressing high-class imbalance in big data. Journal of Big Data 5 (1), 1–30.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., Garcia-Rodriguez, J., 2018. A survey on deep learning techniques for image and video semantic segmentation. Applied Soft Computing 70, 41–65
Wu, Y., Cao, N., Archambault, D., Shen, Q., Qu, H., Cui, W., 2016. Evaluation of graph sampling: A visualization perspective. IEEE transactions on visualization and computer graphics 23 (1), 401–410
Scarselli, F. , Gori, M. , Tsoi, A.C. , Hagenbuchner, M. , Monfardini, G. , 2008. The graph neural network model. IEEE Transactions on Neural Networks 20 (1), 61–80
Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J., 2019. A survey of deep learning-based network anomaly detection. Cluster Computing 22 (1), 949–961
Zoghi, Z. , 2020. Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset. University of Toledo, pp.118
Jiang, K., Wang, W., Wang, A., Wu, H., 2020. Network intrusion detection combined hybrid sampling with deep hierarchical network. IEEE Access 8, 32464–32476
Zhang, S., Tong, H. , Xu, J., Maciejewski, R., 2019. Graph convolutional networks: a comprehensive review. Computational Social Networks 6 (1), 1–23
Monshizadeh, M., Khatri, V., Atli, B.G., Kantola, R., Yan, Z., 2019. Performance evaluation of a combined anomaly detection platform. IEEE Access 7, pp.100964–100978