MULTIMEDIA MA’LUMOTLARINING MANIPULYATSIYASINI ANIQLASHDA MASHINALI O‘QITISHDAN FOYDALANISH

Authors

  • B.B Turdibekov Assistent, Toshkent axborot texnologiyalari universiteti, Toshkent

Keywords:

Raqamli kriminalistika, multimedia kontentini manipulyatsiya qilish; konvolyutsion neyron tarmoqlari; deepfake; raqamli suv belgilari; tasvirlarni qalbakilashtirish; manipulyatsiyani aniqlash, videoni soxtalashtirishni aniqlash; mashinali o‘qitish algoritmlari.

Abstract

Raqamli dasturiy vositalar bizning kundalik hayotimizning bir qismidir. Ammo tasvirlar va videolarni qayta ishlash uchun dasturiy ta’minotlar tobora kuchliroq va ulardan foydalanish oson bo‘lib bormoqda. Bu esa real tasvirlarni soxtalashtirishga imkon beradi. Shunday qilib, so‘nggi bir necha yil ichida vizual media kriminalistikasi ajralmas tadqiqot sohasi sifatida paydo bo‘ldi, u asosan ko‘rib chiqilayotgan raqamli kontentning haqiqiy yoki o‘zgarmasligini aniqlashga yordam beradigan vositalar va usullarni ishlab chiqish bilan shug‘ullanadi. Mashinali o‘qitish tergovchilarga turli xil algoritmlardan foydalangan holda yanada samarali tekshiruvlar o‘tkazish imkonini beradi. Har bir mashinali o‘qitish algoritmi xususiyatlar asosida raqamli kriminalistikaning ma’lum bir sohasida ishlaydi, u murakkablik, ma’lumotlar hajmi, vaqt oralig‘i, korrelyatsiya, izchillik va hokazolarda samaralidir, bundan tashqari, ushbu tadqiqot mashinali o‘qitish algoritmlarini standart mezonlar nuqtai nazaridan taqqoslaydi. Shunday qilib, taklif qilingan tizim xato darajasini tahlil qilish usuli orqali tasvirni qayta ishlash bo‘yicha neyron tarmog‘i kontseptsiyasidan foydalangan holda bunday manipulyatsiya qilingan hujjatlarni aniqlashga yordam beradi,

References

Westerlund M (2019) The emergence of deepfake technology: A review. Technology Innovation Management Review 9:39–52. https://doi.org/10.22215/TIMREVIEW/1282

(PDF) Fake News and Deepfakes: A Dangerous Threat for 21st Century Information Security. https://www.researchgate.net/publication/341454354_Fake_News_and_Deepfakes_A_Dangerous_Threat_for_21st_Century_Information_Security. Accessed 5 May 2023

Harris DA (2019) Deepfakes: False Pornography Is Here and the Law Cannot Protect You. Duke Law Technol Rev

Balushi Y Al, Shaker H, Kumar B (2023) The Use of Machine Learning in Digital Forensics: Review Paper. Proceedings of the 1st International Conference on Innovation in Information Technology and Business (ICIITB 2022) 96–113. https://doi.org/10.2991/978-94-6463-110-4_9

Costantini S, De Gasperis G, Olivieri R (2019) Digital forensics and investigations meet artificial intelligence. Ann Math Artif Intell 86:193–229. https://doi.org/10.1007/S10472-019-09632-Y/METRICS

Dhall D, Kaur R, Juneja M (2020) Machine learning: A review of the algorithms and its applications. Lecture Notes in Electrical Engineering 597:47–63. https://doi.org/10.1007/978-3-030-29407-6_5/COVER

Tolosana R, Vera-Rodriguez R, Fierrez J, et al (2020) Deepfakes and beyond: A Survey of face manipulation and fake detection. Information Fusion 64:131–148. https://doi.org/10.1016/J.INFFUS.2020.06.014

Bhatt P (2017) MACHINE LEARNING FORENSICS:A NEW BRANCH OF DIGITAL FORENSICS. International Journal of Advanced Research in Computer Science 8:217–222. https://doi.org/10.26483/IJARCS.V8I8.4613

Verdoliva L (2020) Media Forensics and DeepFakes: An Overview. IEEE Journal on Selected Topics in Signal Processing 14:910–932. https://doi.org/10.1109/JSTSP.2020.3002101

Shelke NA, Kasana SS (2021) A comprehensive survey on passive techniques for digital video forgery detection. Multimed Tools Appl 80:6247–6310. https://doi.org/10.1007/S11042-020-09974-4/TABLES/10

Joshi P, Shrivastav N (2018) A Review Paper on Image Inpainting and their Different Techniques. Asian Journal of Computer Science and Technology 7:108–111. https://doi.org/10.51983/AJCST-2018.7.1.1821

Mahfoudi G (2021) Authentication of Digital Images and Videos. http://www.theses.fr

Pic MM, Mahfoudi G, Trabelsi A, Dugelay JL (2022) Face Manipulation Detection in Remote Operational Systems. Advances in Computer Vision and Pattern Recognition 413–436. https://doi.org/10.1007/978-3-030-87664-7_19/FIGURES/8

Ferreira S, Antunes M, Correia ME (2021) A Dataset of Photos and Videos for Digital Forensics Analysis Using Machine Learning Processing. Data 2021, Vol 6, Page 87 6:87. https://doi.org/10.3390/DATA6080087

Downloads

Published

2023-06-15

How to Cite

Turdibekov , B. (2023). MULTIMEDIA MA’LUMOTLARINING MANIPULYATSIYASINI ANIQLASHDA MASHINALI O‘QITISHDAN FOYDALANISH. Innovative Development in Educational Activities, 2(11), 238–248. Retrieved from https://openidea.uz/index.php/idea/article/view/1415