OPTIK TARMOQ XAVFSIZLIGIDA TAHDIDLARNI ANIQLASHNING MASHINALI O‘QITISH MODELLARI

Authors

  • Boburbek Abduvaxob o‘g‘li Odiljonov Muhammad al-Alxorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti, magistrant
  • Nuriddin Akbarovich Jabbarov Muhammad al-Alxorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti, o‘qituvchi

Keywords:

Sun’iy intellekt (AI), mashinali o‘qitish (ML), Optik ishlash monitoringi (OPM), raqamli signalni qayta ishlash (DSP), OSM arxitekturasi, Transport-SDN.

Abstract

Biz ushbu tadqiqot ishida optik tarmoq xavfsizligini ta’minlash va ish jarayonlarini tizimlashtirish uchun mashinali o‘qitish (ML) modellarini qo‘llashni taklif etdik. ML modellari optik tarmoq xavfsizligi uchun turli xil algoritmlar va turli ma’lumotlar to‘plamlarida ishlatilishi mumkin. Ushbu modellar oldindan belgilangan xususiyatlarning kombinatsiyasidan foydalangan holda normal va g‘ayritabiiy xatti-harakatlarni aniqlashga o‘rgatiladi.

 

References

S. Zeadally, E. Adi, Z. Baig, and I. A. Khan, “Harnessing artificial intelligence capabilities to improve cybersecurity,” IEEE Access 8, 23817–23837 (2020). DOI: 10.1109/ACCESS.2020.2968045.

Y. Li, N. Hua, Y. Yu, Q. Luo, and X. Zheng, “Light source and trail recognition via optical spectrum feature analysis for optical network security,” IEEE Commun. Lett. 22, 982–985 (2018).

M. Bensalem, S. K. Singh, and A. Jukan, “On detecting and preventing jamming attacks with machine learning in optical networks,” in 2019 IEEE Global Communications Conference (GLOBECOM), (2019), pp. 1–6. DOI: 10.1109/GLOBECOM38437.2019.9013238.

C. Natalino, M. Schiano, A. Di Giglio, L. Wosinska, and M. Furdek, “Experimental study of machine-learning-based detection and identification of physical-layer attacks in optical networks,” IEEE/OSA J. Light. Technol. 37, 4173–4182 (2019). DOI: 10.1109/JLT.2019.2923558.

M. Furdek, C. Natalino, F. Lipp, D. Hock, A. D. Giglio, and M. Schiano, “Machine learning for optical network security monitoring: A practical perspective,” J. Light. Technol. 38, 2860–2871 (2020). DOI: 10.1109/JLT.2020.2987032.

C. Natalino, A. Yayimli, L. Wosinska, and M. Furdek, “Infrastructure upgrade framework for content delivery networks robust to targeted attacks,” Opt. Switch. Netw. 31, 202 – 210 (2019). DOI: 10.1016/j.osn.2018.10.006.

N. Skorin-Kapov, J. Chen, and L. Wosinska, “A new approach to optical networks security: Attack-aware routing and wavelength assignment,” IEEE Trans. Netw. 18, 750–760 (2010). DOI:10.1109/TNET.2009.2031555.

K. Manousakis, P. Kollios, and G. Ellinas, “Multi-period attack-aware optical network planning under demand uncertainty,” in Optical Fiber and Wireless Communications, R. Roka, ed. (2017). DOI: 10.5772/in- techopen.68491.

J. Zhu, B. Zhao, and Z. Zhu, “Leveraging game theory to achieve efficient attack-aware service provisioning in EONs,” IEEE/OSA J. Ligh. Techn. 35, 1785–1796 (2017). DOI: 10.1109/JLT.2017.2656892.

N. Sambo, K. Christodoulopoulos, N. Argyris, P. Giardina, C. Delezoide, D. Roccato, A. Percelsi, R. Morro, A. Sgambelluri, A. Kretsis, G. Kanakis, G. Bernini, E. Varvarigos, and P. Castoldi, “Field trial: Demonstrating automatic reconfiguration of optical networks based on finite state machine,” J. Light. Technol. 37, 4090–4097 (2019). DOI: 10.1109/JLT.2019.2922841.

Adhikari, M., Choi, B.-G., & Kim, J.-H. (2020). Detection of threats in optical network security using machine learning algorithms. Journal of Optical Communications, 41(2), 131–137. https://doi.org/10.1515/joc-2020-0062

Downloads

Published

2023-04-16

How to Cite

Odiljonov , B. A. o‘g‘li, & Jabbarov, N. A. (2023). OPTIK TARMOQ XAVFSIZLIGIDA TAHDIDLARNI ANIQLASHNING MASHINALI O‘QITISH MODELLARI. Innovative Development in Educational Activities, 2(7), 709–716. Retrieved from https://openidea.uz/index.php/idea/article/view/1105