
Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 69

CONFIGURATION MANAGEMENT IN SOFTWARE ENGINEERING

Yulduz Erkiniy

Turin Polytechnic University in Tashkent,

yerkiniy@gmail.com

ABSTRACT

Configuration management plays a crucial role in software engineering, ensuring

the effective management of software artifacts throughout the development lifecycle.

This article explores the significance of configuration management, its key principles,

and the various techniques and tools employed in the field. By maintaining version

control, facilitating collaboration, and ensuring traceability, configuration

management enables teams to achieve greater software quality, reliability, and

maintainability. This abstract provides a concise overview of configuration

management in software engineering, highlighting its importance and offering insights

into its implementation and benefits.

Keywords: configuration management, software engineering, version control,

collaboration, traceability, software quality, reliability, maintainability.

1. Introduction

One of the management activities of the software process is configuration management.

It is one of the most crucial tasks that must be finished in order to deploy software.

Tracking a software’s development release by release is the core objective of

configuration management. All software components must be identified and managed,

along with their evolution. Change management (CM) must also ensure that prior

software versions may be rebuilt and regulate changes made to any component, as well

as access to and modification rights.

Figure 1 - Growth of a software system in space and time

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz
mailto:yerkiniy@gmail.com

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 70

According to Bersoff et al. (1980), “No matter where you are in the system life cycle,

the system will change, and the desire to change it will persist throughout the life

cycle”[1]. Software can develop and change in two separate ways:

• Time: The components of the software system are susceptible to change

throughout time. Different iterations of the same software are released (for

instance, to add new features or address bugs);

• Space: To adapt software to various contexts and circumstances, several

deployments of the same program (for example, a Windows and Linux version

of the same software) can be made. Additionally, a software system generally

generates hundreds of different documents on its own because it is made up of

many different components (such as test logs, code, papers, and so on).

The existence of many software system components and their simultaneous evolution

throughout time are dealt with by configuration management. The practice of

configuration management is based on four key ideas:

• Versioning: What does versioning tell you about a source file’s past?

• Configuration: Which collection of papers are appropriate for a given need?

• Change Control: Who has access to what and how is it controlled?

• Build: How is the entire system obtained?

2. Versioning

Software Versioning is the process of monitoring various software releases.

Developers and analysts can use it to determine when and what modifications have

been made to software code and related documents. The straightforward progressive

naming of a software’s files and packages is a simple, primitive method of versioning.

Tools are able to maintain track of versions for more sophisticated version

management, giving users the option to decide whether new versions of a file (with the

same name or a different version name) must be created through a commit. With the

aid of versioning technologies, it is always feasible to restore an earlier version of the

software as a whole or of a single file.[2]

2.1 Configuration Item

An element placed under configuration control is known as a Configuration Item (CI).

It is the fundamental building block of the configuration management system and is

equivalent to a line of code or any other type of work product (such as a set of

specifications or design documents) associated with the program. A Configuration Item

may be made up of one or more documents or files, depending on the type of element

(for example, a Configuration Item for a C++ class can be made up of two files, the

‘hpp’ header and the ‘cpp’ class file). Every CI has a name, a version number, and all

previous iterations of the file (its history) are preserved.

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 71

Not every document in a project has to be handled as a configuration item; each project

gets to decide which documents to treat as CIs. If no document is treated as a CI, the

system has no history and no configuration information available for it, which may

result in excessive overhead for the Configuration Management activity. For instance,

since they are readily available for each version without needing to keep track of all

alterations made to them, it is typically a good idea to exclude auto-generated files from

the Configuration Items.

2.2 Version

A Version is an instance of a Configuration Item at a specific time (for example, the

same Req document on 2015/07/11 and 2015/07/12). Each occurrence of a CI has a

special number that serves as the CI’s temporal identification.[3]

Versions keep track of the modifications made to Configuration Items over time. The

Derivation History is a record of all modifications made to a document or piece of

code, including the justification, the performer, the date, and the time of each

modification.

A standard prologue style can be used for this purpose, allowing ad-hoc tools (like svn)

to handle the derivation history automatically. This can be done, for example, by

including it as a header in every new version of a document or source file.

2.3 Configuration

A Configuration is a collection of various Configuration Items in a certain version that

are dependent on one another. Configurations typically contain not just code but a

variety of project-related documents as well.

Although some dependencies among configuration items (such as those between test

cases, requirements, and tested code fragments) may be syntactically declared (e.g., via

include instructions in C# or import statements in Java), the bulk of them are not

(problem of traceability).

Configurations have their own version as well. Every CI contained in the Configuration

is in a certain version. The same version of a CI may be present in multiple

configurations (see figure 112, where two classes may be present in three different

configurations, each with two versions).

Figure 2 - Configurations and Configuration Items

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 72

The two basic methods for identifying Configurations are as follows:

• Keep a configuration ID and a list of the CIs that belong to it (much like in CVS).

In this instance, if a CI changes, the configuration also does, even though

unmodified CIs never alter their names. The Configuration Items (CI) names and

configuration names must be kept separately in this technique, but it is simple to

recognize when the CIs change.[4]

 Figure 3 - Different IDs for Configurations and CIs

• Keep a configuration ID and utilize that ID for all the CIs that are a part of it

(much like Subversion and GIT do). In this instance, each CI within a

configuration that is modified causes all other CIs within it to also change names

(even if they are unaffected). This method combines the management of CIs and

Configurations, making it simpler to comprehend which Configuration Items are

present in a certain Configuration but more challenging to pinpoint the precise

moments when a Configuration Item is modified.

 Figure 4 - Same IDs for Configurations and CIs

A baseline is a unique configuration that exists in a consistent state. Every setup is not

a baseline. The baseline is frequently delivered and frozen in its current condition;

adjustments begin with it, and if something goes wrong, the project is rolled back to

the baseline. There are two different kinds of baselines: a product baseline is a stable

version of the program supplied to the user or customer, whilst a development baseline

is for internal use only and serves as a secure rollback point for development.

The Data Management Model can also be used to describe versioning practices.

There are two techniques to save the details of modifications to configurations and CIs:

• Keep Differences: Only changes made since the last commit are saved.

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 73

• Keep snapshots: Each time you commit, a copy of all your CIs is saved. A link to

the prior version can be retained if files are not changed from the previous

version.[5]

3. Change Control

Usually, teams of developers working on various software components must be shared

among them when developing software. Common repositories (shared folders), where

all developers can read and write documents and program, are used to share portions

of software.

Instead of working directly in the repository, where Configuration Items and

Configurations are kept, each developer instead works in his workspace, where copies

of the CIs are kept. As a result, there are numerous workspaces (one for each developer)

and frequently just one repository for each project. To export the changes produced

locally by the developer and import the modifications made remotely by other

developers, workspaces must be synchronized with the repository.

Figure 5 - Repository and Workspaces

The synchronization of changes made by several developers is the main problem that

needs to be solved in change control. Each developer updates the repository with their

local version after finishing it locally by using the commit command. If another

developer is working on the same file, his workspace’s local copy may not be instantly

updated to reflect the newly committed version. The implementation of change control

can take many various forms, from shared files on file servers to CMS solutions with

checkin/checkout processes.[6]

3.1 Shared Files

The simplest approach has a file server where developers can upload and download

files without using versioning or change control.

Changes made to shared files and folders are not disciplined since there is no oversight

of file modifications. Because a developer might duplicate his adjustments on a shared

file and overwrite those made by others, this could result in data loss (see figure 117,

where John’s changes are lost as an example).

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 74

Figure 6 - Repository - shared files

Additionally, a shared folder lacks configuration management tools like automated

versioning; all versioning must be done manually using unique file names. The strategy

typically only works for extremely small projects.

3.2 Configuration Manager Server (CMS)

The goal of the implementation using Configuration Manager Server is to solve the

shared folder issues. On files that have been extracted from the repository, there are

two major activities carried out: check-in (commit), which updates the repository with

the local modifications made by the CIs, and check-out (pull), which updates the

workspace by obtaining the CIs stored in the repository. These two fundamental

procedures are employed to control document alterations.

Figure 7 - Check-in and Check-out operations

When opposed to using a shared folder, using a Configuration Manager Server is safer.

When using a CMS, in order to change something, the user must check it out first,

informing any subsequent users that the file is being changed. Files must be checked

back in to the repository after adjustments have been made, and the changes made are

compared to those already made by other users. There is no such control over the files

in the repository with shared folders; anyone can access and alter any file, and the other

users won’t even be aware of it.[7]

CMS are useful for more than just Change Control:

• Revert files to a former state as a Configuration Management system;

• Restore the project’s complete configuration (or baseline) to a previous state;

• Comparing and tracking alterations over time;

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 75

• Keep track of who last edited something, and see if that modification caused any

problems.

Check-ins and Check-outs are regulated, and there are a number of options available

for them. For example, they can be blocked for a group of users, which would grant

them rights within the system. If a checked-out CI is locked, only one person at a time

can make changes to it, but several people can still read it. A checked-in CI can choose

whether to increase its version at each modification; if not, the previous versions are

lost at each change; otherwise, the CI’s history is kept for potential rollbacks.

Two primary control tactics can be determined based on these three main options for

check-ins and check-outs: Lock Modify Unlock, Copy Modify Merge, etc.[8]

• Modify Lock A serialization of the changes is similar to unlock. Using the check-

out process, a developer attempts to obtain a lock over the CI; if no other

developer has the lock on the CI, the developer who requested the lock may alter

it; otherwise, the developer is unable to checkout the CI and must wait for lock

release. Only when the developers holding the lock check in is the lock released.

The primary issue with the Lock edit Unlock technique is that no other developer

can edit a CI if the locker forgets to unlock it. Additionally, there is no way to

work in tandem; only one developer may work on a CI at a time. As a result, this

method may be overly inflexible for large development teams and projects.

 Figure 8 - Lock Modify Unlock

• A less rigid technique is the Copy Modify Merge, which enables many

developers to check out the same file and work concurrently on it. The major

problem is that conflicts that may result from modifications made by two or more

developers to the same file must be addressed and merged (although there are

solutions that do automatic merge on changed CIs).

 Figure 9 - Copy Modify Merge

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 76

Where to store the CMS is another decision that needs to be made. There are three

basic approaches available:

• On the same computer as the user’s workspace is a local repository (like RCS,

for example). A local repository only enables version control; it does not permit

file sharing among numerous developers. Therefore, change control methods are

not required.

 Figure 10 - Local Repository

• The repository is on a single server that maintains the history of files in the

centralized way (e.g., Subversion, Perforce, CVS), and numerous users (clients)

can access it and check out CIs. A centralized solution has two key drawbacks:

a developer cannot function without a connection, and the central server is the

system’s single point of failure.

 Figure 11 - Centralized Repository

• The repository is duplicated across all servers and clients when using a

distributed technique (like GIT). By preserving the history of configurations in

the clients as well, this method attempts to solve the issues with the centralized

one. Anyhow, it is thought that a central server would simplify the architecture

(each alteration would be submitted to the server, and each client would be

synchronized with the server).[9]

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 77

 Figure 10 - Distributed Repository

3.3 Branches and Merges

A branch is similar to a development thread; it is a duplicate of an object (or of the

entire project) that is under change control and allows for concurrent updates.

Versioning also applies to branches, and it is essential to maintain a record of the shared

ancestry of related branches.

Every project typically includes two branches, one for developers to utilize to resolve

bugs and one for them to add new features.

It is frequently essential to merge separate branches that have undergone parallel

operations on code in order to create a new branch that contains all of the parallel

modifications (or a subset of them after some have been removed).[10]

3.4 CM Planning

In order to prevent problems with the activities carried out on various Configuration

Items and Branches of the project, Configuration Management should be thoroughly

planned and documented. If the Change Management operation wasn’t documented,

the development team can end up doing conflicting or pointless labour.

Key Change Management related decisions and policies for a project are contained in

a Configuration Management Plan, which can be developed in accordance with many

current templates:

• Which Configuration Management tool is utilized, if any (such as IBM

ClearCase, Microsoft BitKeeper, CVS, RCS, Subversion, and Git);

• Which papers ought to be considered Configuration Items, and which shouldn’t;

• The project’s organization in workspaces and repositories;

• The policy for controlling changes to specified configuration items;

• Who the CM Manager is and what their roles and responsibilities are are

particularly important.

One responsible can be assigned to each module and subsystem, and one repository

can be designated for any subsystem, with check-in/check-out procedures and

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 78

dedicated workspaces for developers, for a product that is a hierarchy of various

subsystems (each one an executable and several modules of source files).[11]

4. Build

The process of compiling and connecting software components into a standalone,

executable form, starting with the various possible component combinations that can

be selected, is known as software building. The building process can be straightforward

or quite difficult, depending on the project. Builds for large projects are often

automated and guided by build scripts because they can be tedious and error-prone

when done manually.

Figure 11 - System building steps

The right versions of the source code are first pulled from the Version Management

system using the build script, then sent to the compiler for compilation. The Linker

then uses the Object Code components that it has received from the Compiler to build

the executable system. The component dependencies (i.e., the connections between

various parts of code, such as those described by C includes) must be checked as part

of the building process, which is the most crucial step. System Modeling Languages

utilize logical system models to solve the problem of users of build tools losing track

of which objects are kept in which files, which can lead to mistakes. This is a rather

difficult activity, and particularly in projects with numerous components it is easy that

linking problems are found and alerted to the developers. In order to create the system

correctly, the linker must ensure that all dependencies are consistent and that all files

are present.[12]

Figure 12 - Component dependencies

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 79

The following are the typical issues that arise during the building process:

• Components missing from the build instructions: In really complicated systems,

it is simple to overlook one out of hundreds of components. As previously stated,

the linker typically handles and signals these issues;

• Wrong component versions specified: The build script contains incorrect

versions of specific components. Although a system constructed with the

incorrect parts may initially function, faults may occur after delivery;

• Inability to obtain data files: builds should never rely on "standard" data files,

which may be absent or different depending on the location;

• Incorrect data file references within components: as naming conventions might

vary from place to place, utilizing absolute names in code always leads to issues;

• Incorrect platform was chosen for building: various OSs or hardware

configurations should call for particular build settings;

• The wrong version of the supplied compiler (or other build tool) may actually

produce different code, and the produced component may behave differently

than the expected one.

Automatic build also offers the option of only rebuilding the components that have

changed. For example, if only one leaf in the system tree of dependents is modified,

only that leaf and the components that depend on it are rebuilt. This tool can help you

cut down on building times, which may be important for big projects.

The automated building tools Make, Ant, Apache Maven, and Gradle are a few

examples.

5. Configuration Management with Git

Git is a system that was developed in 2005 for the Linux kernel’s development and is

mostly used for source code management in the software development industry.

According to a survey done in the Eclipse community, Git has firmly established itself

as the most popular code management system among developers in recent years,

surpassing Subversion in developers’ choices as early as 2014.

Git is a distributed configuration management system, and each computer’s Git

directories are taken into account as complete repositories. On snapshots, Git’s data

management model is based. Git is mostly based on local operations: all necessary data

is stored on the present computer; no data from other machines in the network is

required. Integrity characteristics offered by Git include computed checksums at each

commit, prior to anything being stored, and the absence of unrecorded modifications

to any directory or file.

5.1 Git States

Git-managed documents may be in one of three conditions:

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 80

• Committed: Data has been securely stored in the local database (with

checksums);

• Modified: the file has undergone local changes, but the local database has not

yet been updated;

• Staged files have undergone local changes and have been noted in their current

state for inclusion in the upcoming commit.

5.2 Git Project Sections

A Git project’s files can be arranged in one of three categories:

• Git Directory: It houses the project’s entire object database and any associated

metadata. When a repository is copied from another computer or from an online

hosting service (like GitHub), it is what is copied. Each commit permanently

stores updated and staged files in the Git Directory.

• Working Directory, also known as Working Tree, is a version of the project that

has been checked out. It includes all of the files that are extracted from the

compressed Git Folder and saved locally for the developer to use or modify.

• Index is another name for the staging section, which holds details about all the

files that will be included in the following commit. Git’s data management

model is built on snapshots, therefore when files are staged, snapshots of those

files are also added to the staging area.

Figure 13 - Typical Git Workflow

5.3 File states

Git requires one of four states for files it manages:

• Files that have been added to the working directory but weren’t in the most

recent snapshot (from which the project was cloned) or the staging area are

classified as untracked. They may also be original files that have been deleted

from Git using the rm command.

• Unmodified: When a repository is cloned, all of its files are exactly as they were

during the last commit.

• Files marked as modified have undergone changes since the last commit.

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 81

• Staged files are those that have been chosen for the upcoming commit.

Figure 14 - Lifecycle of files

Conclusion

In conclusion, configuration management is a crucial aspect of software engineering

that facilitates effective management and control of software artifacts throughout the

development process. By implementing configuration management practices, such as

version control, collaboration, and traceability, software teams can achieve improved

software quality, reliability, and maintainability. The use of appropriate tools and

techniques, combined with adherence to key principles, enables seamless

coordination and synchronization among team members, leading to optimized

development workflows and enhanced productivity. Configuration management

serves as a foundation for successful software development, enabling teams to

efficiently handle changes, mitigate risks, and deliver high-quality software products.

Embracing configuration management practices can significantly contribute to the

success of software engineering projects, ensuring the delivery of robust and reliable

software solutions to meet the evolving needs of users and stakeholders.

References:

1. "Software Configuration Management Handbook" by Alexis Leon and Mathews

Leon, 3rd edition, 2015.

2. "Configuration Management in Agile Development: A Systematic Literature

Review" by Timo Männistö and Jouni Markkula, 2016.

3. "Software Configuration Management Patterns: Effective Teamwork, Practical

Integration" by Stephen P. Berczuk and Brad Appleton, 2002.

4. "Configuration Management in Large-Scale Agile Development: A Case Study" by

S-P. Krishna and D. Janzen, 2012.

5. "Configuration Management Principles and Practice" by Anne Mette Jonassen

Hass, 2011.

6. "Configuration Management in Continuous Delivery: A Systematic Literature

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

Innovative Development in Educational Activities ISSN: 2181-3523 VOLUME 2 | ISSUE 22 | 2023

 Scientific Journal Impact Factor (SJIF): 5.938 http://sjifactor.com/passport.php?id=22323

https://t.me/openidea_uz Multidisciplinary Scientific Journal November, 2023 82

Review" by Tero Paivarinta and Jouni Markkula, 2017.

7. "Software Configuration Management Strategies and IBM Rational ClearCase: A

Practical Introduction" by Ahmed Alhagry, 2010.

8. "Configuration Management in Distributed Agile Development: A Systematic

Literature Review" by Timo Männistö and Jouni Markkula, 2018.

9. "Software Configuration Management Implementation Roadmap" by Mario E.

Moreira, 2004.

10. "Configuration Management Challenges in Large-Scale Agile Development: A

Case Study" by S-P. Krishna and D. Janzen, 2011.

11. "Software Configuration Management: A Clear Case for ClearCase" by Anne

Mette Jonassen Hass, 2003.

12. "Configuration Management Best Practices: Practical Methods that Work in the

Real World" by Robert Aiello and Leslie Sachs, 2010.

http://sjifactor.com/passport.php?id=22323
https://t.me/openidea_uz

