ПРИЛОЖЕНИЯ НАУКИ ТЕОРИИ ИГРОВ В ЭКОНОМИКЕ

Нориева Азиза Жасур кизи

Джизакский филиал Национального университета Узбекистана, Кафедра прикладной математики, ассистент.

noriyevaaziza@gmail.com

АННОТАЦИЯ

В статье представлено применение теории игр и науки о процессах в экономике, а также рассмотрена проблема нахождения максимальной прибыли на основе количества продукции, отправленной потребителям.

Ключевые слова: потребитель, товар, прибыль, динамическое программирование, оптимальное распределение.

ВВЕДЕНИЕ

Наука теория игр и исследование процессов занимается созданием методов и их реализацией для более эффективного функционирования управленческих организационных систем. Предметом этой науки является система управления нескольких подразделений, связанных друг с другом. На всех этапах развития общества прилагаются усилия к ведению экономики на основе четкого плана. Это особенно важно в нынешних условиях, когда рыночные отношения Для восстанавливаются. определения направления эффективного экономического развития необходимо овладеть методами количественного моделирования процессов. Это необходимо при разработке ближайших и стратегических планов в рамках народного хозяйства, рассмотрении крупных и долгосрочных событий, определении различных вариантов экономического развития. Также создать программу развития региона, обеспечить разработки и исследования согласованными планами, выполнить ряд сложных задач по целевому программному планированию, распределить возможности, реализовать рациональную работу предприятия в условиях внешней рыночной среды. Во многих случаях для изучения организационных вопросов может служить наука исследования процессов — направление прикладной математики, эффективно развивающееся быстрыми темпами.

МЕТОДОЛОГИЯ

Общая модель распределения напряжения выглядит следующим образом. Если y_j продукции отправляется j — потребителю, пусть прибыль от этого равна $R_j(y_j)$. В этом случае также указывается предел для y_j . $\sum_{j=1}^s H_j(y_j) = N$, (где $y_j = 0,1,...$ при всех значениях j)

$$\sum_{j=1}^{S} R_j(y_j)$$

найти максимум функции.

Динамическое программирование можно использовать для решения задач этого типа. Для этого введем следующие обозначения: $g_j(n)$ — максимальная прибыль от распределения п продукции $1,2,\ldots,j$ потребителям; $y_j(n)$ — количество товаров, отправленное потребителю j для получения прибыли $g_j(n)$. Тогда, исходя из рекуррентной формулы динамического программирования, имеем следующее соотношение:

$$g_{j}(n) = \max_{y_{j}} \{R_{j}(y_{j}) + g_{j-1}[n - H_{j}(y_{j})]\}, n = 0,1,...,N,$$

$$g_{0}(n) = 0, n = 0,1,...,N,$$

он определяется через $n=0,1,\ldots,N$ и так далее, заканчивая нахождением значения $g_s(N)$. Это значение $g_s(N)$ представляет собой максимальную прибыль. Количество продукта y_j , которое необходимо отгрузить потребителям для получения этой максимальной прибыли, определяется следующим образом: сначала определяется $y_s(N)$, что дает значение $g_j(n)$, что дает y_s , после чего y_{s-1} определяется с помощью y_{s-1} и так далее. Поэтому соответствующий $y_j(n)$ также следует учитывать при вычислении $g_j(n)$. [1]

РЕЗУЛЬТАТЫ

Найдите оптимальный план распределения продукции и максимальное значение прибыли, исходя из следующего, при N=5

	$y_1 = 0$	$y_1 = 1$	$y_1 = 2$	$y_2 = 0$	$y_2 = 1$	$y_2 = 2$	$y_3 = 0$	$y_3 = 2$	$y_3 = 3$
$R_j(y_j)$	0	1	3	0	2	3	0	2	3
$H_j(y_j)$	0	2	3	0	3	4	0	1	2

Учитывая, что $g_0(n) = 0$ для всех значений n, запишем приведенную выше рекуррентную формулу в случае, когда j = 1, т.е.

$$g_1(n) = max y_1 R_1(y_1) + g_0(n - H_1(y_1))$$

здесь необходимо, чтобы $H_1(y_1) \le n$. Легко видеть, что при n=0 Значение y_1 , удовлетворяющее условию $H_1(y_1) \le 0$, уникально и $y_1(0)=0$, то $g_1(0)=0$.

Scientific Journal Impact Factor (SJIF): 5.938

Записываем два последних значения в соответствующие ячейки таблицы ниже. Теперь рассмотрим случай, когда n=1. Здесь есть два значения y_1 , удовлетворяющие условию $H_1(y_1) \le 1 : y_1 = 0$ и $y_1 = 1$, однако $R_1(0) = 0$, $R_1(1) = 2$. Поэтому записываем $y_1(1) = 1$ и $g_1(1) = 2$ в соответствующие ячейки таблицы.

Пусть n=2, тогда существуют три значения y_1 , удовлетворяющие условию $H_1(y_1) \leq 2$: $y_1=0$, $y_1=1$ и $y_1=2$, однако $R_1(0)=0$, $R_1(1)=2$ $R_1(2)=3$. Поэтому записываем $y_1(2)=2$ и $y_1(2)=3$ в соответствующие ячейки таблицы. Можно показать, что $y_1(n)=2$ и $g_1(n)=3$ для n=3,4,5. Все это пишем в соответствующих графах. После этого мы видим j=2. Итак, рекуррентная формула для каждого n выглядит следующим образом:

$$g_2(n) = max y_2 R_2(y_2) + g_1[n - H_2(y_2)]$$

здесь максимум $H_2(y_2) \le n$ осуществляется по значениям y_2 , удовлетворяющим условию. Для упрощения расчета обозначим выражение в скобках $T(n, y_2)$:

n	$y_1(n)$	$g_1(n)$	$y_2(n)$	$g_2(n)$	$y_3(n)$	$g_3(n)$
0	0	0	0	0	0	0
1	1	2	0	2	0	2
2	2	3	0	2	0	3
3	2	3	0	3	0	3
4	2	3	2	4	1	4
5	2	3	3	5	3	5

Так
$$y_1 = 2$$
, $y_2 = 0$, $y_3 = 3$; $g_3(5) = 6$.

ЗАКЛЮЧЕНИЕ

В теории игр и исследовании процессов оптимальные решения многих актуальных задач, в том числе и в области экономики, решаются с помощью метода минмакса. Количество продукции, доставляемой потребителям, и прибыль — это систематически планируемые методы и алгоритмы для получения максимальной прибыли.

ЛИТЕРАТУРЫ

- 1. Noriyeva A. O" QUVCHILARNING KREATIVLIK QOBILIYATLARINI RIVOJLANTIRISHDA NOSTANDART MISOL VA MASALALARNING AHAMIYATI //Журнал математики и информатики. 2022. Т. 2. №. 1.
- 2. Meliyeva Mohira Zafar qizi, & Noriyeva Aziza. (2023). KOʻPHADLARNI HOSILA YORDAMIDA KOʻPAYTUVCHILARGA AJRATISH . *ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ*, 20(3), 117–120. Retrieved from http://newjournal.org/index.php/01/article/view/5708
- 3. Abdunazarov R. Issues of effective organization of practical classes and clubs in mathematics in technical universities. Mental Enlightenment Scientific-Methodological Journal. Current Issue: Volume 2022, Issue 3 (2022) Articles.
- 4. Абдуназаров Р. О. численной решение обратной спектральной задачи для оператора Дирака //Журнал "Вопросы вычислительной и прикладной математики. №. 95. С. 10-20.
- 5. Отакулов С., Мусаев А. О. Применение свойства квазидифференцируемости функций типа минимума и максимума к задаче негладкой оптимизации //Colloquium-journal. Голопристанський міськрайонний центр зайнятості, 2020. №. 12 (64). С. 48-53.
- 6. Мусаева А. О. Зарубежная система финансирования образовательных учреждений //Наука и новые технологии. 2011. №. 10. С. 75-81.
- 7. Мусаев А. О. Интеграция образовательных систем России и Дагестана XIX века //Известия Дагестанского государственного педагогического университета. Психолого-педагогические науки. 2010. №. 3. С. 21-24.